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Abstract
In this paper, we propose concurrence classes for an arbitrary multi-qubit state
based on orthogonal complement of a positive operator valued measure, or
POVM for short, on quantum phase. In particular, we construct concurrence
for an arbitrary two-qubit state and concurrence classes for the three- and four-
qubit states. Finally, we construct Wm and GHZm class concurrences for
multi-qubit states. The unique structure of our POVM enables us to distinguish
different concurrence classes for multi-qubit states.

PACS numbers: 42.50.Hz, 42.50.Dv, 42.65.Ky

1. Introduction

Entanglement is an interesting feature of quantum theory which in recent years has
been attracted many researchers to quantify, classify, and investigate its useful properties.
Entanglement has already some applications such as quantum teleportation and quantum
key distribution, and new applications for this fascinating quantum phenomenon will surely
emerge. For instance, multipartite entanglement has a capacity to offer new unimaginable
applications in emerging fields of quantum information and quantum computation. One
of the widely used measures of entanglement for a pair of qubits is the concurrence that
gives an analytic formula for the entanglement of formation [1, 2]. In recent years, some
proposals have been made to generalize this measure into a general bipartite state; e.g.,
Uhlmann [3] has generalized the concept of concurrence by considering arbitrary conjugation.
Then Audenaert et al [4] generalized this formula in the spirit of Uhlmann’s work, by
defining a concurrence vector for the pure state. Moreover, Gerjuoy [5] and Albeverio
and Fei [6] gave an explicit expression in terms of coefficients of a general pure bipartite
state. Therefore, it could be interesting to try to generalize this measure from a bipartite
to a multipartite system (see [7–10]). An application of concurrence for a physically
realizable state such as BCS state can be found in [11]. Quantifying entanglement of
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multipartite states has been discussed in [12–23]. In [24, 25] we have proposed a degree
of entanglement for a general pure multipartite state, based on the POVM on quantum
phase. In this paper, we will define concurrence for an arbitrary two-qubit state based on
the orthogonal complement of our POVM. From our POVM we will construct an operator
that can be seen as a tiled operation acting on the density operator. Moreover, we will
define concurrences for different classes of arbitrary three- and four-qubit states. And
finally, we will generalize our result into an arbitrary multi-qubit state. The structure of
our POVM enables us to detect and define different concurrence classes for multi-qubit states.
The definition of concurrence is based on an analogy with bipartite states. For multi-qubit
states, the Wm class concurrences are invariant under stochastic local quantum operation and
classical communication (SLOCC) [20]. Furthermore, all homogeneous positive functions of
pure states that are invariant under determinant-one SLOCC operations are entanglement
monotones [22]. However, invariance under SLOCC for the Wm class concurrence for
general multipartite states need deeper investigation. It is worth mentioning that Uhlmann [3]
has shown that entanglement monotones for concurrence are related to antilinear operators.
However, the GHZm class concurrences for multipartite states need optimization over all
local unitary operations. Classification of multipartite states has been discussed in [9, 10,
26–29]. For example, Verstraete et al [26] have considered a single copy of a pure four-partite
state of qubits and investigated its behaviour under SLOCC, which gave a classification of
all different classes of pure states of four qubits. They have also shown that there exist nine
families of states corresponding to nine different ways of entangling four qubits. Osterloh
and Siewert [9] have constructed entanglement measures for pure states of multipartite qubit
systems. The key element of their approach is an antilinear operator that they called a
comb. For qubits, the combs are invariant under the action of the special linear group. They
have also discussed inequivalent types of genuine four-qubit entanglement, and found three
types of entanglement for these states. This result coincides with our classification, where
in section 6 we construct three types of concurrence classes for four-qubit states. Miyake
[27] has also discussed classification of multipartite states in entanglement classes based on
the hyper-determinant. He has shown that two states belong to the same class if they are
interconvertible under SLOCC. Moreover, the only paper that addresses the classification of
higher-dimensional multipartite states is the paper by Miyake and Verstraete [28], where they
have classified multipartite entangled states in the 2×2×n quantum systems for (n � 4). They
have shown that there exist nine essentially different classes of states, and they give rise to a
five-graded partially ordered structure, including GHZ class and W class of 3 qubits. Mintert
et al [29] have proposed generalizations of concurrence for multipartite quantum systems that
can distinguish distinct quantum correlations. However, their construction is not similar to
our concurrence classes, since we can distinguish these classes based on joint phases of the
orthogonal complement of our POVM by construction. Finally, Wang [10] has proposed two
classes of the generalized concurrence vectors of the multipartite systems consisting of qubits.
Our classification is similar to Wang’s classification of the multipartite state. However, the
advantage of our method is that our POVM can distinguish these concurrence classes without
prior information about inequivalence of these classes under local quantum operation and
classical communication (LOCC). Let us denote a general, multipartite quantum system with
m subsystems by Q = Qm(N1, N2, . . . , Nm) = Q1Q2 · · ·Qm, consisting of a state |�〉 =∑N1

k1=1 · · · ∑Nm

km=1 αk1,...,km
|k1, . . . , km〉 and |�∗〉 = ∑N1

k1=1 · · · ∑Nm

km=1 α∗
k1,...,km

|k1, . . . , km〉, the

complex conjugate of |�〉; let ρQ = ∑N
n=1 pn|�n〉〈�n|, for all 0 � pn � 1, and

∑N
n=1 pn = 1

denotes a density operator acting on the Hilbert space HQ = HQ1 ⊗HQ2 ⊗ · · · ⊗HQm
, where

the dimension of the j th Hilbert space is given by Nj = dim
(
HQj

)
. We are going to use this
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notation throughout this paper, i.e., we denote a mixed pair of qubits by Q2(2, 2). The density
operator ρQ is said to be fully separable, which we will denote by ρ

sep
Q , with respect to the

Hilbert space decomposition, if it can be written as ρ
sep
Q = ∑N

n=1 pn

⊗m
j=1 ρn

Qj
,
∑N

n=1 pn = 1,
for some positive integer N, where pn are positive real numbers and ρn

Qj
denotes a density

operator on the Hilbert space HQj
. If ρ

p

Q represents a pure state, then the quantum system
is fully separable if ρ

p

Q can be written as ρ
sep
Q = ⊗m

j=1 ρQj
, where ρQj

is a density operator
on HQj

. If a state is not separable, then it is called an entangled state. Some of the generic
entangled states are called Bell states and EPR states.

2. General definition of POVM on quantum phase

In this section we will define a general POVM on quantum phase. This POVM is a set
of linear operators �(ϕ1,2, . . . , ϕ1,N , ϕ2,3, . . . , ϕN−1,N ) furnishing the probabilities that the
measurement of a state ρ on the Hilbert space H is given by

p(ϕ1,2, . . . , ϕ1,N , ϕ2,3, . . . , ϕN−1,N ) = Tr(ρ�(ϕ1,2, . . . , ϕ1,N , ϕ2,3, . . . , ϕN−1,N )), (1)

where (ϕ1,2, . . . , ϕ1,N , ϕ2,3, . . . , ϕN−1,N ) are the outcomes of the measurement of the quantum
phase, which is discrete and binary. This POVM satisfies the following properties:
�(ϕ1,2, . . . , ϕ1,N , ϕ2,3, . . . , ϕN−1,N ) is self-adjoint, positive and normalized, i.e.,

N(N−1)/2︷ ︸︸ ︷∫
2π

· · ·
∫

2π

dϕ1,2 · · · dϕ1,N dϕ2,3 · · · dϕN−1,N�(ϕ1,2, . . . , ϕN−1,N ) = I, (2)

where the integral extends over any 2π intervals of the form (ϕk, ϕk + 2π) and ϕk are the
reference phases for all k = 1, 2, . . . , N . A general and symmetric POVM in a single
Nj -dimensional Hilbert space HQj

is given by

�
(
ϕ1j ,2j

, . . . , ϕ1j ,Nj
, ϕ2j ,3j

, . . . , ϕNj −1,Nj

) =
Nj∑
lj

Nj∑
kj =1

eiϕkj ,lj |kj 〉〈lj |, (3)

where |kj 〉 and |lj 〉 are the basis vectors in HQj
and quantum phases satisfying the following

relation: ϕkj ,lj − ϕlj ,kj

(
1 − δkj lj

)
. The POVM is a function of the Nj(Nj − 1)/2 phases(

ϕ1j ,2j
, . . . , ϕ1j ,Nj

, ϕ2j ,3j
, . . . , ϕNj −1,Nj

)
. It is now possible to form a POVM of a multipartite

system by simply forming the tensor product

�Q
(
ϕQ1;k1,l1 , . . . , ϕQm;km,lm

) = �Q1

(
ϕQ1;k1,l1

) ⊗ · · · ⊗ �Qm

(
ϕQm;km,lm

)
, (4)

where, e.g., ϕQj ;kj ,lj is the set of POVMs relative phase associated with subsystems Qj , for all
kj , lj = 1, 2, . . . , Nj , where we need only to consider when lj > kj . This POVM will play a
central role in constructing concurrence classes for multi-qubit states.

3. Entanglement of formation and concurrence

In this section we will review entanglement of formation and concurrence for a pair of qubits
and a general bipartite state. For a mixed quantum system Q2(N1, N2) the entanglement of
formation is defined by

EF (Q2(N1, N2)) = inf
∑

n

pnEF

(
ρ

p

Q(n)

)
, (5)
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where 0 � pn � 1 is a probability distribution and the infimum is taken over all pure state
decompositions of ρQ. The entanglement of formation for a mixed quantum system Q2(2, 2)

[2] can be written in terms of the Shannon entropy and concurrence as follows,

EF (Q2(2, 2)) = H
(

1
2

(
1 + (1 − C2(Q2(2, 2)))

1
2
))

, (6)

where C(Q2(2, 2)) is called concurrence and is defined by

C(Q2(2, 2)) = max

(
0, λ1 −

∑
n>1

λn

)
, (7)

where, λn, n = 1, . . . , 4 are square roots of the eigenvalues of ρQρ̃Q in descending order, where

ρ̃Q is given by ρ̃Q = (σ2 ⊗ σ2)ρ
∗
Q(σ2 ⊗ σ2), H(X) is the Shannon entropy and σ2 = (

0 −i

i 0

)
is the Pauli matrix. Moreover, the concurrence of a pure two-qubit, bipartite state is defined
as C(�) = |〈�|�̃〉|, where the tilde represents the ‘spin-flip’ operation |�̃〉 = σ2 ⊗ σ2|�∗〉.
In the following section we will use the concept of orthogonal complement of our POVM
to detect and define concurrence for an arbitrary two-qubit state and concurrence classes for
arbitrary three-, four- and multi-qubit states.

4. Concurrence for an arbitrary two-qubit state

In this section we will construct concurrence for an arbitrary two-qubit state based on
orthogonal complement of our POVM. For two-qubit state Q2(2, 2) the POVM is explicitly
given by

�Q
(
ϕQ1;1,2, ϕQ2;1,2

) = �Q1

(
ϕQ1;1,2

) ⊗ �Q2

(
ϕQ2;1,2

)
=

(
1 eiϕQ1 ;1,2

e−iϕQ1 ;1,2 1

)
⊗

(
1 eiϕQ2 ;1,2

e−iϕQ2 ;1,2 1

)
. (8)

In this POVM, the only terms that has information about joint properties of both
subsystems are phase sum e±i(ϕQ1;1,2+ϕQ2;1,2) and phase difference e±i(ϕQ1;1,2−ϕQ2;1,2). Now, from
this observation we can assume that the phase sum gives a negative contribution that is −1
and the phase difference gives a positive contribution that is +1 to a measurement. Then,
we can mathematically achieve this construction by defining an operator �̃Qj

(
ϕQj ;1,2

) =
I2 − �Qj

(
ϕQj ;1,2

)
, where I2 is a 2 × 2 identity matrix, for each subsystem j . Indeed by

construction this operator is the orthogonal complement of our POVM. Then, we define an
operator that detects entanglement as follows

�̃EPR
Q = �̃Q1

(
ϕ

π
2
Q1;1,2

) ⊗ �̃Q2

(
ϕ

π
2
Q2;1,2

)
= σy ⊗ σy, (9)

where by choosing ϕ
π
2
Qj ;kj ,lj

= π
2 for all kj < lj , j = 1, 2, we get an operator which coincides

with the Pauli spin-flip operator σy for a single-qubit. Now, in analogy with Wootter’s formula
for concurrence of a quantum system Q2(2, 2) with the density operator ρQ, we can define
ρ̃EPR
Q as

ρ̃EPR
Q = �̃EPR

Q ρ∗
Q�̃EPR

Q (10)

and the concurrence is given by C
(Q2(2, 2)) = max
(
0, λEPR

1 − ∑
n>1 λEPR

n

)
, where

λEPR
n , n = 1, . . . , 4, are square roots of the eigenvalues of ρQρ̃EPR

Q in descending order and ρ∗
Q

is the complex conjugation of ρQ. Now, we would like to extend this result to a three-qubit
state.
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5. Concurrence for an arbitrary three-qubit state

The procedure of defining concurrence for an arbitrary three-qubit state is more complicated
than for a pair of qubits since in the three-qubit state case we have to deal with two different
classes of three-partite state, namely W 3 and GHZ3 classes. For the W 3 class, we have three
types of entanglement: entanglement between subsystems one and two, Q1Q2, one and three,
Q1Q3, and two and three, Q2Q3. So there should be three operators �̃W 3

Q1,2
, �̃W 3

Q1,3
and �̃W 3

Q2,3

corresponding to entanglement between these subsystems; for example, we have

�̃W 3

Q1,2
= �̃Q1

(
ϕ

π
2
Q1

) ⊗ �̃Q2

(
ϕ

π
2
Q2

) ⊗ I2, (11)

�̃W 3

Q1,3
= �̃Q1

(
ϕ

π
2
Q1

) ⊗ I2 ⊗ �̃Q3

(
ϕ

π
2
Q3

)
, (12)

�̃W 3

Q2,3
= I2 ⊗ �̃Q2

(
ϕ

π
2
Q2

) ⊗ �̃Q3

(
ϕ

π
2
Q3

)
. (13)

Now, for a pure quantum system Qp

3 (2, 2, 2), we define the concurrence of W 3 class by

C
(
QW 3

3 (2, 2, 2)
) =

(
NW

3

3∑
1=r1<r2

∣∣〈�∣∣�̃W 3

Qr1 ,r2
�∗〉∣∣2

)1/2

= (
4NW

3 [|α1,2,1α2,1,1 − α1,1,1α2,2,1 + α1,2,2α2,1,2 − α1,1,2α2,2,2|2
+ |α1,1,2α2,1,1 − α1,1,1α2,1,2 + α1,2,2α2,2,1 − α1,2,1α2,2,2|2
+ |α1,1,2α1,2,1 − α1,1,1α1,2,2 + α2,1,2α2,2,1 − α2,1,1α2,2,2|2]

)1/2
, (14)

where NW
3 is a normalization constant and for a quantum system Q3(2, 2, 2) with the density

operator ρQ, let

ρ̃W 3

Q = �̃W 3

Qr1 ,r2
ρ∗
Q�̃W 3

Qr1 ,r2
. (15)

Then concurrence of a three-qubit mixed state of W 3 class could be defined by

C
(
QW 3

3 (2, 2, 2)
) = max

(
0, λW 3

1 (r1, r2) −
∑
n>1

λW 3

n (r1, r2)

)
,

where λW 3

n (r1, r2) for all 1 � r1 < r2 � 3 are square roots of the eigenvalues of ρQρ̃W 3

Q
in descending order. The second class of three-qubit state that we would like to consider
is the GHZ3 class. For the GHZ3 class we have again three types of entanglement that
give contribution to degree of entanglement, but there is a difference in construction of
operators compare to the W 3 class. The operators �̃GHZ3

Q1,2
, �̃GHZ3

Q1,3
and �̃GHZ3

Q2,3
that can detect

entanglement between these subsystems are given by

�̃GHZ3

Q1,2
= �̃Q1

(
ϕ

π
2
Q1

) ⊗ �̃Q2

(
ϕ

π
2
Q2

) ⊗ �̃Q3

(
ϕπ
Q3

)
, (16)

�̃GHZ3

Q1,3
= �̃Q1

(
ϕ

π
2
Q1

) ⊗ �̃Q2

(
ϕπ
Q2

) ⊗ �̃Q3

(
ϕ

π
2
Q3

)
, (17)

�̃GHZ3

Q2,3
= �̃Q1

(
ϕπ
Q1

) ⊗ �̃Q2

(
ϕ

π
2
Q2

) ⊗ �̃Q3

(
ϕ

π
2
Q3

)
, (18)

where ϕπ
Qj

= π for all j . Now, for a pure quantum system Qp

3 (2, 2, 2), we define the

concurrence of GHZ3 class by

C
(
QGHZ3

3 (2, 2, 2)
) =

(
NGHZ

3

3∑
1=r1<r2

∣∣〈�∣∣�̃GHZ3

Qr1 ,r2
�∗〉∣∣2

)1/2

, (19)
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where NGHZ
3 is a normalization constant. For a quantum system Q3(2, 2, 2), let ρ̃GHZ3

Q =
�̃GHZ3

Qr1 ,r2
ρ∗
Q�̃GHZ3

Qr1 ,r2
. Then concurrence of a three-qubit mixed state of GHZ3 class is defined by

C
(
QGHZ3

3 (2, 2, 2)
) = max

(
0, λGHZ3

1 (r1, r2) −
∑
n>1

λGHZ3

n (r1, r2)

)
, (20)

where λGHZ3

n (r1, r2) for all 1 � r1 < r2 � 3 are square roots of the eigenvalues of ρQρ̃GHZ3

Q in

descending order. For three-qubit states the operators �W 3

Qr1 ,r2
and �GHZ3

Qr1 ,r2
satisfy

(
�W 3

Qr1 ,r2

)2 = 1

and
(
�GHZ3

Qr1 ,r2

)2 = 1. Now, for a state |�
W

3〉 = α1,2,2|1, 2, 2〉 + α2,1,2|2, 1, 2〉 + α2,2,1|2, 2, 1〉,
the W 3 class concurrence gives

C
(
QW 3

3 (2, 2, 2)
) = (

4NW
3 [|α1,2,2α2,1,2|2 + |α1,2,2α2,2,1|2 + |α2,1,2α2,2,1|2]

)1/2
.

When α1,2,2 = α2,1,2 = α2,2,1 = 1√
3
, we get C

(
QW 3

3 (2, 2, 2)
) = (

4
3N

W
3

)1/2
and C

(
QGHZ3

3

(2, 2, 2)
) = 0. Thus, for NW

3 = 3
4 , we have C

(
QW 3

3 (2, 2, 2)
) = 1.

Moreover, let
∣∣�±

GHZ3

〉 = α1,1,1|1, 1, 1〉 ± α2,2,2|2, 2, 2〉 and ρGHZ = q
∣∣�+

GHZ3

〉〈
�+

GHZ3

∣∣+
(1 − q)|�−

GHZ3〉〈�−
GHZ3 |. Then the GHZ3 concurrence class gives C

(
QGHZ3

3 (2, 2, 2)
) =

max
(
0, λGHZ3

1 (r1, r2) − ∑
2>1 λGHZ3

n (r1, r2)
) = max(0, 2q − 1), where λGHZ3

1 (1, 2) = q,

λGHZ3

2 (1, 2) = 1 − q, and 0 < q � 1.
As we have seen there are W 3 and GHZ3 class concurrences for a three-qubit state.

However, we are not sure how we should deal with these two different classes, but there are at
least two possibilities: the first possibility is to deal with them separately, and the second one
is to define an overall expression for concurrence of the three-qubit state by adding these two
concurrences.

6. Concurrence classes for an arbitrary four-qubit state

In this section we will construct three different concurrences for the four-qubit states based on
quantum phases of our POVM, namely the W 4,GHZ4 and GHZ3 class concurrences. Let
us begin by constructing operators for W 4 class of four-qubit states. For the W 4 class we have
six different types of entanglement: entanglement between subsystem one and two Q1Q2, one
and three Q1Q3, and two and three Q2Q3, etc. So, there are six operators: �̃W 4

Q1,2
, �̃W 4

Q1,3
, �̃W 4

Q1,4
,

�̃W 4

Q2,3
, �̃W 4

Q2,4
, �̃W 4

Q3,4
corresponding to entanglement between these subsystems, i.e., we have

�̃W 4

Q1,2
= �̃Q1

(
ϕ

π
2
Q1

) ⊗ �̃Q2

(
ϕ

π
2
Q2

) ⊗ I2 ⊗ I2, (21)

�̃W 4

Q1,3
= �̃Q1

(
ϕ

π
2
Q1

) ⊗ I2 ⊗ �̃Q3

(
ϕ

π
2
Q3

) ⊗ I2, (22)

�̃W 4

Q1,4
= �̃Q1

(
ϕ

π
2
Q1

) ⊗ I2 ⊗ I2 ⊗ �̃Q4

(
ϕ

π
2
Q4

)
, (23)

�̃W 4

Q2,3
= I2 ⊗ �̃Q2

(
ϕ

π
2
Q2

) ⊗ �̃Q3

(
ϕ

π
2
Q3

) ⊗ I2, (24)

�̃W 4

Q2,4
= I2 ⊗ �̃Q2

(
ϕ

π
2
Q2

) ⊗ I2 ⊗ �̃Q4

(
ϕ

π
2
Q4

)
, (25)

�̃W 4

Q3,4
= I2 ⊗ I2 ⊗ �̃Q3

(
ϕ

π
2
Q3

) ⊗ �̃Q4

(
ϕ

π
2
Q4

)
. (26)

Now, for a pure quantum system Qp

4 (2, . . . , 2), we define the concurrence of W 4 class by

C
(
QW 4

4 (2, . . . , 2)
) =

(
NW

4

4∑
1=r1<r2

∣∣〈�∣∣�̃W 4

Qr1 ,r2
�∗〉∣∣2

)1/2

, (27)
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where NW
4 is a normalization constant. Now, for a quantum system QW 4

2 (2, . . . , 2) let
ρ̃W 4

Q = �̃W 4

Qr1 ,r2
ρ∗
Q�̃W 4

Qr1 ,r2
. Then concurrence of a four-qubit mixed state of W 4 class can be

defined by

C
(
QW 4

4 (2, . . . , 2)
) = max

(
0, λW 4

1 (r1, r2) −
∑
n>1

λW 4

n (r1, r2)

)
, (28)

where λW 4

n (r1, r2) for all 1 � r1 < r2 � 4 are square roots of the eigenvalues of ρQρ̃W 4

Q in

descending order. The operators �̃W 4

Qr1 ,r2
for W 4 class satisfies

(
�̃W 4

Qr1 ,r2

)2 = 1. Now, for a state

|�W 4〉 = α1,1,1,2|1, 1, 1, 2〉 + α1,1,2,1|1, 1, 2, 1〉 + α1,2,1,1|1, 2, 1, 1〉 + α2,1,1,1|2, 1, 1, 1〉, the W 4

class concurrence gives

C
(
QW 4

4 (2, . . . , 2)
) = (

4NW
3 [|α1,2,1,1α2,1,1,1|2 + |α1,1,2,1α2,1,1,1|2 + |α1,1,1,2α2,1,1,1|2

+ |α1,1,2,1α1,2,1,1|2 + |α1,1,1,2α1,2,1,1|2 + |α1,1,1,2α1,1,2,1|2]
)1/2

and for α1,1,1,2 = α1,1,2,1 = α1,2,1,1 = α1,2,1,1 = 1√
4
, we get C

(
QW 4

4 (2, . . . , 2)
) = (

3
2N

W
4

)1/2
,

C
(
QGHZ3

4 (2, . . . , 2)
) = 0. The second class of four-qubit state that we would like to consider

is the GHZ4 class. For GHZ4, we have again six different types of entanglement and there
are six operators defined as follows:

�̃GHZ4

Q1,2
= �̃Q1

(
ϕ

π
2
Q1

) ⊗ �̃Q2

(
ϕ

π
2
Q2

) ⊗ �̃Q3

(
ϕπ
Q3

) ⊗ �̃Q4

(
ϕπ
Q4

)
, (29)

�̃GHZ4

Q1,3
= �̃Q1

(
ϕ

π
2
Q1

) ⊗ �̃Q2

(
ϕπ
Q2

) ⊗ �̃Q3

(
ϕ

π
2
Q3

) ⊗ �̃Q4

(
ϕπ
Q4

)
, (30)

�̃GHZ4

Q1,4
= �̃Q1

(
ϕ

π
2
Q1

) ⊗ �̃Q2

(
ϕπ
Q2

) ⊗ �̃Q3

(
ϕπ
Q3

) ⊗ �̃Q4

(
ϕ

π
2
Q4

)
, (31)

�̃GHZ4

Q2,3
= ⊗�̃Q1

(
ϕπ
Q1

) ⊗ �̃Q2

(
ϕ

π
2
Q2

) ⊗ �̃Q3

(
ϕ

π
2
Q3

) ⊗ �̃Q4

(
ϕπ
Q4

)
, (32)

�̃GHZ4

Q2,4
= ⊗�̃Q1

(
ϕπ
Q1

) ⊗ �̃Q2

(
ϕ

π
2
Q2

) ⊗ �̃Q3

(
ϕπ
Q3

) ⊗ �̃Q4

(
ϕ

π
2
Q4

)
, (33)

�̃GHZ4

Q3,4
= ⊗�̃Q1

(
ϕπ
Q1

) ⊗ �̃Q2

(
ϕπ
Q2

) ⊗ �̃Q3

(
ϕ

π
2
Q3

) ⊗ �̃Q4

(
ϕ

π
2
Q4

)
. (34)

Now, for a pure four-qubit state Qp

4 (2, . . . , 2) we define the concurrence of GHZ4 class by

C
(
QGHZ4

4 (2, . . . , 2)
) =

(
NGHZ

4

4∑
1=r1<r2

∣∣〈�∣∣�̃GHZ4

Qr1 ,r2
�∗〉∣∣2

)1/2

, (35)

where NGHZ
4 is a normalization constant and for a quantum system QGHZ4

2 (2, . . . , 2) with
ρ̃GHZ4

Q = �̃GHZ4

Qr1,r2
ρ∗
Q�̃GHZ4

Qr1 ,r2
, we define the concurrence of four-qubit mixed state of GHZ4

class by

C
(
QGHZ4

4 (2, . . . , 2)
) = max

(
0, λGHZ4

1 (r1, r2) −
∑
n>1

λGHZ4

n (r1, r2)

)
, (36)

where λGHZ4

n (r1, r2) for all 1 � r1 < r2 � 4 are square roots of the eigenvalues of ρQρ̃GHZ4

Q
in descending order. Moreover, we have

(
�̃GHZ4

Qr1 ,r2

)2 = 1. The third class of four-qubit state

that we want to consider is the GHZ3 class. For GHZ3, we have four different types of
entanglement. So there are four operators defined as given below:
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�̃GHZ3

Q12,3
= �̃Q1

(
ϕ

π
2
Q1

) ⊗ �̃Q2

(
ϕ

π
2
Q2

) ⊗ �̃Q3

(
ϕπ
Q3

) ⊗ I2, (37)

�̃GHZ3

Q12,4
= �̃Q1

(
ϕ

π
2
Q1

) ⊗ �̃Q2

(
ϕ

π
2
Q2

) ⊗ I2 ⊗ �̃Q4

(
ϕπ
Q4

)
, (38)

�̃GHZ3

Q13,4
= �̃Q1

(
ϕ

π
2
Q1

) ⊗ I2 ⊗ �̃Q3

(
ϕ

π
2
Q3

) ⊗ �̃Q4

(
ϕπ
Q4

)
, (39)

�̃GHZ3

Q23,4
= I2 ⊗ �̃Q2

(
ϕ

π
2
Q2

) ⊗ �̃Q3

(
ϕπ
Q3

) ⊗ �̃Q4

(
ϕ

π
2
Q4

)
. (40)

Then, for a pure four-qubit state Qp

4 (2, . . . , 2), we define concurrence for a GHZ3 class by

C
(
QGHZ3

4 (2, . . . , 2)
) =

NGHZ
3

4∑
1=r1<r2<r3

∣∣〈�∣∣�̃GHZ3

Qr1r2 ,r3
�∗〉∣∣2

1/2

, (41)

where NGHZ
3 is a normalization constant and for a quantum system Q2(2, . . . , 2) with density

operator ρQ, let

ρ̃GHZ3

Q = �̃GHZ3

Qr1r2 ,r3
ρ∗
Q�̃GHZ3

Qr1r2 ,r3
. (42)

Then concurrence for a four-qubit GHZ3 class is defined by

C
(
QGHZ3

4 (2, . . . , 2)
) = max

(
0, λGHZ3

1 (r1r2, r3) −
∑
n>1

λGHZ3

n (r1r2, r3)

)
, (43)

where λGHZ3

n (r1r2, r3) for all 1 � r1 < r2 < r3 � 4 are square roots of the eigenvalues

of ρQρ̃GHZ3

Q in descending order. And again we have
(
�GHZ3

Qr1r2 ,r3

)2 = 1. Thus, we have
detected and defined three different concurrences for the four-qubit state based on our POVM
construction.

7. Concurrence classes for an arbitrary multi-qubit state

At this point, we can realize that, in principle, we could in a straightforward manner extend
our construction into a multi-qubit state Qm(2, . . . , 2). In order to simplify our presentation,
we will use �m = k1, l1; . . . ; km, lm as an abstract multi-index notation, where kj = 1, lj = 2
for all j . The unique structure of our POVM enables us to distinguish different classes of
multipartite states, which are inequivalent under LOCC operations. In the m-partite case, the
off-diagonal elements of the matrix corresponding to

�̃Q
(
ϕQ1;k1,l1 , . . . , ϕQm;km,lm

) = �̃Q1

(
ϕQ1;k1,l1

) ⊗ · · · ⊗ �̃Qm

(
ϕQm;km,lm

)
(44)

have phases that are sum or differences of phases originating from two and m subsystems.
That is, in the later case the phases of �̃Q

(
ϕQ1;k1,l1 , . . . , ϕQm;km,lm

)
take the form

(
ϕQ1;k1,l1 ±

ϕQ2;k2,l2 ± · · · ± ϕQm;km,lm

)
and identification of these joint phases makes our classification

possible. Thus, we can define linear operators for the EPRQr1Qr2
class based on our POVM

which are sum and difference of phases of two subsystems, i.e.,
(
ϕQr1 ;kr1 ,lr1

±ϕQr2 ;kr2 ,lr2

)
. That

is, for the EPRQr1Qr2
class we have

�̃
EPR�m

Qr1 ,r2 (2r1 ,2r2 ) = I21 ⊗ · · · ⊗ �̃Qr1

(
ϕ

π
2
Qr1 ;kr1 ,lr1

) ⊗ · · · ⊗ �̃Qr2

(
ϕ

π
2
Qr2 ;kr2 ,lr2

) ⊗ · · · ⊗ I2m
. (45)

Let C(m, k) = (
m

k

)
denotes the binomial coefficient. Then there are C(m, 2) linear operators

for the EPRQr1Qr2
class and the set of these operators gives the Wm class concurrence.
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For the GHZm class, we define the linear operators based on our POVM which are sum
and difference of phases of m-subsystems, i.e.,

(
ϕQr1 ;kr1 ,lr1

±ϕQr2 ;kr2 ,lr2
±· · ·±ϕQm;km,lm

)
. That

is, for the GHZm class we have

�̃
GHZm

�m

Qr1 ,r2 (2r1 ,2r2 ) = �̃Qr1

(
ϕ

π
2
Qr1 ;kr1 ,lr1

) ⊗ �̃Qr2

(
ϕ

π
2
Qr2 ;kr2 ,lr2

) ⊗ �̃Qr3

(
ϕπ
Qr3 ;kr3 ,lr3

)
⊗ · · · ⊗ �̃Qm

(
ϕπ
Qm−1;krm ,lrm

)
, (46)

where by choosing ϕπ
Qj ;kj ,lj

= π for all kj < lj , j = 1, 2, . . . , m, we get an operator which
has the structure of the Pauli operator σx embedded in a higher-dimensional Hilbert space and
coincides with σx for a single-qubit. There are C(m, 2) linear operators for the GHZm class
and the set of these operators gives the GHZm class concurrence.

Moreover, we define the linear operators for the GHZm−1 class of m-partite states
based on our POVM which are sum and difference of phases of m − 1 subsystems, i.e.,(
ϕQr1 ;kr1 ,lr1

± ϕQr2 ;kr2 ,lr2
± . . . ϕQm−1;km−1,lm−1 ± ϕQm−1;km−1,lm−1

)
. That is, for the GHZm−1 class

we have

�̃
GHZm−1

�m

Qr1r2 ,r3 (2r1 ,2r2 ) = �̃Qr1

(
ϕ

π
2
Qr1 ;kr1 ,lr1

) ⊗ �̃Qr2

(
ϕ

π
2
Qr2 ;kr2 ,lr2

) ⊗ �̃Qr3

(
ϕπ
Qr3 ;kr3 ,lr3

)
⊗ · · · ⊗ �̃Qm−1

(
ϕπ
Qm−1;krm−1 ,lrm−1

) ⊗ I2m
, (47)

where 1 � r1 < r2 < · · · < rm−1 < m. There are C(m,m − 1) such operators for the
GHZm−1 class. Now, for the pure quantum system Qp

3 (2, . . . , 2), we define the EPRQr1Qr2

class concurrence as

C
(
QEPRr1 ,r2

m (2, . . . , 2)
) =

4NEPRr1 ,r2
m

∑
k1,l1,...,;km,lm

∣∣〈�∣∣�̃EPR�m

Qr1 ,r2 (2r1 ,2r2 )�
∗〉∣∣2

1/2

,

and the Wm class concurrence as

C
(
QWm

m (2, . . . , 2)
) =

(
m∑

r2>r1=1

C2
(
QEPRr1 ,r2

m (2, . . . , 2)
))1/2

, (48)

where NEPRr1 ,r2
m are normalization constants. Moreover, the GHZm class concurrence for

general pure quantum system Qp
m(2, . . . , 2), with

C
(
QGHZm

r1,r2

(
2r1 , 2r2

)) =
∑

∀k1,l1,...,km,lm

∣∣〈�∣∣�̃GHZm
�m

Qr1 ,r2 (2r1 ,2r2 )�
∗〉∣∣2

, (49)

is given by

C
(
QGHZm

m (2, . . . , 2)
) =

(
NGHZ

m

m∑
r2>r1=1

C
(
QGHZm

r1,r2

(
2r1 , 2r2

)))1/2

, (50)

where NGHZ
m is a normalization constant. Now, let us address the monotonicity of these

concurrence classes of multipartite states. For m-qubit states, the Wm class concurrences
are entanglement monotones. Let Aj ∈ SL(2, C), for j = 1, 2, . . . , m, and A =
A1 ⊗ A2 ⊗ · · · ⊗ Am, then A�̃

Wm
1,2;...;1,2

Qr1,r2 (2r1 ,2r2 )AT = �̃
Wm

1,2;...;1,2

Qr1 ,r2 (2r1 ,2r2 ), for all 1 < r1 < r2 < m.
Thus, the Wm class concurrences for multi-qubit states are invariant under SLOCC, and
hence are entanglement monotones. Again, for general multipartite states we cannot give
any proof on invariance of Wm class concurrence under SLOCC and this question needs
further investigation. Moreover, for multipartite states, the GHZm class concurrences are

not entanglement monotones except under additional conditions. Since A�̃
GHZm

1,2;...;1,2

Qr1 ,r2 (2r1 ,2r2 )AT �=
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�̃
GHZ3

1,2;...;1,2

Qr1 ,r2 (2r1 ,2r2 ), for all 1 < r1 < r2 < m. The reason is that Aj�̃Qj

(
ϕπ
Qj ;1,2

)
AT

j �= �̃Qj

(
ϕπ
Qj ;1,2

)
.

Thus, the GHZm class concurrence for three-qubit states are not invariant under SLOCC,
and hence are not entanglement monotones. However, by construction the GHZm class

concurrences are invariant under all permutations. Moreover, we have
(
�̃

GHZ3
1,2;...;1,2

Qr1 ,r2 (2r1 ,2r2 )

)2 = 1

and
(
�̃Qj

(
ϕπ
Qj ;1,2

))2 = 1. Furthermore, we need to be very careful when we are using
the GHZm class concurrences. This class can be zero even for an entangled multipartite
state. Thus, for the GHZm class concurrences we need to perform an optimization over local
unitary operations. For example, let U = U1 ⊗U2 ⊗· · ·⊗Um, where Uj ∈ U(2, C). Then we
maximize the GHZm class concurrences for a given pure m-partite state over all local unitary
operations U .

Finally, e.g., for the Wm class for a general quantum system Qm(2, . . . , 2) with the density
operator ρQ, we define

ρ̃
Wm

�m

Q = �̃
EPR�m

Qr1 ,r2 (2r1 ,2r2 )ρ
∗
Q�̃

EPR�m

Qr1 ,r2 (2r1 ,2r2 ) (51)

and then the Wm class concurrence is defined by

C
(
QWm

�m

2 (2, . . . , 2)
) = max

(
0, λ

Wm
�m

1 (r1, r2) −
∑
n>1

λ
Wm

�m
n (r1, r2)

)
, (52)

where λ
Wm

�m
n (r1, r2) for all 1 � r1 < r2 � m are the square roots of the eigenvalues of ρQρ̃

Wm
�m

Q
in descending order. The GHZm class concurrences for a quantum system Qm(N2, . . . , 2)

can be defined in a similar way. The definition of concurrence classes for multipartite mixed
states is only a well-motivated suggestion and is a generalization of Wootters and Uhlmann
definitions. Moreover, our operators �

Xm

Qr1 ,r2
satisfy

(
�

Xm

Qr1 ,r2

)2 = 1. As an example of a multi-

qubit state let us consider a state |Wm〉 = 1√
m

(|1, 1, . . . , 1, 2〉 + · · · + |2, 1, . . . , 1, 1〉). For this
state the Wm class concurrence is

C
(
QWm

m (2, . . . , 2)
) =

(
4C(m, 2)

m2
NW

m

)1/2

=
(

2(m − 1)

m
NW

m

)1/2

. (53)

This value coincides with the one given by Dür [20]. Finally, for some partially separable
states the C

(
QWm

m (2, . . . , 2)
)

class and C
(
QGHZm

m (2, . . . , 2)
)

class concurrences do not exactly
quantify entanglement in general. Example of such states can be for example, constructed
for three-qubit states. Thus, we may need to define a overall concurrence by adding these
concurrence classes.

8. Conclusion

In this paper we have expressed concurrence for an arbitrary two-qubit state, based on our
POVM, which coincides with the Wootters original formula. Moreover, we have generalized
this result into arbitrary three- and four-qubit states. For three-qubit states, we have
found two different concurrence classes and for four-qubit states, we have constructed three
concurrence classes. Finally, we have generalized our result into arbitrary multi-qubit state and
we have explicitly constructed Wm and GHZm class concurrences. We have investigate the
monotonicity of the Wm class and the GHZm class concurrences for multi-qubit states. The
Wm class concurrence for multi-qubit states are entanglement monotones. However, GHZm

class concurrences need optimization over all local unitary operation. Our construction
suggested the existence of different classes of multipartite entanglement which are inequivalent
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under LOCC. At least, we know that there are two different classes of entanglement for multi-
qubit states which our methods could distinguish very well. But we can also define an overall
expression for concurrence with a suitable normalization coefficient. However, we think that
this work is a timely contribution to the relatively large effort presently being undertaken to
quantify and classify multipartite entanglement.
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